inorganic compounds

ge's method (four-point inter-

 $T_{\min} = 0.413, T_{\max} = 0.441$

1728 reflections with $F > 3\sigma(F)$

9351 measured reflections

 $R_{\rm int} = 0.016$

1728 independent reflections

polation; Yamauchi et al., 1965)]

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tripraseodymium pentairon(III) dodecaoxide, Pr₃Fe₅O₁₂: a synchrotron radiation study

Takashi Komori,^a* Terutoshi Sakakura,^a Yasuyuki Takenaka,^b Kiyoaki Tanaka^a and Takashi Okuda^a

^aGraduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Japan, and ^bHokkaido University of Education HAKODATE, Yahata-cho, Hakodate-shi, Japan Correspondence e-mail: tkomori@katch.ne.jp

Received 14 September 2009; accepted 21 September 2009

Key indicators: single-crystal synchrotron study; T = 298 K; mean σ (Pr–Fe) = 0.000 Å; R factor = 0.019; wR factor = 0.021; data-to-parameter ratio = 550.1.

The title compound, pentairon tripraseodymium dodecaoxide (PrIG), has an iron garnet structure. There are two Fe site symmetries. One of the Fe atoms is coordinated by six O atoms, forming a slightly distorted octahedron, and has $\overline{3}$ site symmetry. The other Fe atom is coordinated by four O atoms, forming a slightly distorted tetrahedron, and has $\overline{4}$ site symmetry. FeO₆ octahedra and FeO₄ tetrahedra are linked together by corners. The Pr atom is coordinated by eight O atoms, forming a distorted dodecahedron, and has 222 site symmetry. The O atoms occupy the general positions.

Related literature

The title compound is isotypic with the $Ia\overline{3}d$ form of $Y_3Fe_5O_{12}$ (YIG). For related structures, see: Bonnet *et al.* (1975). For details of the crystal growth from low-temperature liquid-phase epitaxy, see: Fratello *et al.* (1986). For the extinction correction, see: Becker & Coppens (1975). X-ray intensities were measured avoiding multiple diffraction, see: Takenaka *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} \Pr_{3} \operatorname{Fe}_{5} O_{12} \\ M_{r} = 893.98 \\ \operatorname{Cubic}, Ia\overline{3}d \\ a = 12.6302 \ (3) \ \text{\AA} \\ V = 2014.79 \ (8) \ \text{\AA}^{3} \\ Z = 8 \end{array}$

Synchrotron radiation $\lambda = 0.67171 \text{ Å}$ $\mu = 17.41 \text{ mm}^{-1}$ T = 298 K0.035 mm (radius) Data collection

Rigaku AFC four-circle

diffractometer Absorption correction: for a sphere [transmission coefficients for spheres tabulated in *International Tables C* (1992), Table 6.3.3.3, were interpolated with Lagran-

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ 17 parameters

 $wR(F^2) = 0.021$ $\Delta \rho_{max} = 2.52 \text{ e Å}^{-3}$

 S = 1.06 $\Delta \rho_{min} = -3.16 \text{ e Å}^{-3}$

 9351 reflections
 $\Delta \rho_{min} = -3.16 \text{ e Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

$\frac{Pr1-O1}{Pr1-O1^{i}}$	2.42410 (10) 2.54010 (10)	Fe1-O1 Fe2-O1 ⁱⁱ	2.03220 (10) 1.87450 (10)
$O1-Fe1-O1^{i}$ $O1^{ii}-Fe2-O1^{iii}$	85.87 (1) 114.39 (1)	O1 ⁱⁱ -Fe2-O1 ^{iv}	100.02 (1)
Symmetry codes: (i) z, x, y ; (ii) $x + \frac{1}{2}$	$v_1 - z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$	$z - \frac{1}{2}, y + \frac{1}{2};$ (iv)

Symmetry codes: (i) z, x, y; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{4}, z - \frac{1}{4}, y + \frac{1}{4}$; (iv) $x + \frac{1}{2}, -y, z$.

Data collection: *AFC-5*, specially designed for PF-BL14A (Rigaku, 1984) and *IUANGLE* (Tanaka *et al.*, 1994); cell refinement: *RSLC-3 UNICS* system (Sakurai & Kobayashi, 1979); data reduction: *RDEDIT* (Tanaka, 2008); program(s) used to solve structure: *QNTAO* (Tanaka *et al.*, 2008); program(s) used to refine structure: *QNTAO*; molecular graphics: *ATOMS for Windows* (Dowty, 2000); software used to prepare material for publication: *RDEDIT*.

The authors thank Dr V. J. Fratello for supplying the crystals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2121).

References

Becker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417-425.

- Bonnet, M., Delapalme, A., Fuess, H. & Thomas, M. (1975). Acta Cryst. B31, 2233–2240.
- Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
- Fratello, V. J., Brandle, C. D., Slusky, S. E. G., Valentino, A. J., Norelli, M. P. & Wolfe, R. (1986). *Cryst. Growth*, **75**, 281–283.
- Rigaku (1984). AFC-5. Rigaku Corporation, Tokyo, Japan.
- Sakurai, T. & Kobayashi, K. (1979). Rep. Inst. Phys. Chem. Res. 55, 69-77.
- Takenaka, Y., Sakakura, T., Tanaka, K. & Kishimoto, S. (2008). Acta Cryst.

A**64**, C566. Tanaka, K. (2008). *RDEDIT*. Unpublished.

- Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246–252.
- Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Win, Z. (2008). Acta Cryst. A**64**, 437–449.
- Yamauchi, J., Moriguchi, S. & Ichimatsu, S. (1965). Numerical Calculation Method for Computer. Tokyo: Baifūkan.

supplementary materials

Acta Cryst. (2009). E65, i73 [doi:10.1107/S1600536809038100]

Tripraseodymium pentairon(III) dodecaoxide, Pr₃Fe₅O₁₂: a synchrotron radiation study

T. Komori, T. Sakakura, Y. Takenaka, K. Tanaka and T. Okuda

Comment

The title compound, $Pr_3Fe_5O_{12}$ (PrIG), was difficult to be grown. It was grown by the low-temperature-liquid-phase epitaxy for the first time by Fratello *et al.* (1986). Though the crystal structure was assumed as iron-garnet-type structure by lattice constant and extinction rule, the complete structure was not determined. In this paper, we determine the O atom position and the complete structure by the full matrix least-squares program QNTAO. Since the R-factor is small and the residual density has no significant peaks where no atoms exists, the structure was finally determined to be iron-garnet structure. It is isotypic with the Ia $\overline{3}$ d form of $Y_3Fe_5O_{12}$ (YIG). (Bonnet *et al.*, 1975). The Pr atom is coordinated by eight oxygen atoms. It forms a distorted dodecahedron. There are two Fe site symmetries. One of the Fe atom is coordinated by six oxygen atoms. It forms a slitely distorted octahedron. The other Fe atom is coordinated by four oxygen atoms. It forms a slightly distorted tetrahedron. FeO₆ octahedron and FeO₄ tetrahedron are linked together by corners. The structure of PrIG is drawn in Fig.1. And displacement ellipsoids of PrO₈ is drawn in Fig.2.

Experimental

Single crystals of praseodymium iron garnet were prepared by low temperature liquid phase epitaxy on $Sm_3(ScGa)_5O_{12}$ seeds with lattice parameters near the projected values for PrIG.

Refinement

X-ray intensities were measured avoiding multiple diffraction. (Takenaka et al., 2008).

Figures

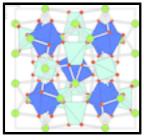


Fig. 1. The structure of $Pr_3Fe_5O_{12}$. Small red and large green spheres represent O and Pr atoms, respectively. Purple octahedron and blue tetrahedron represent FeO_6 and FeO_4 units, respectively.

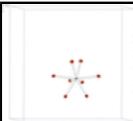
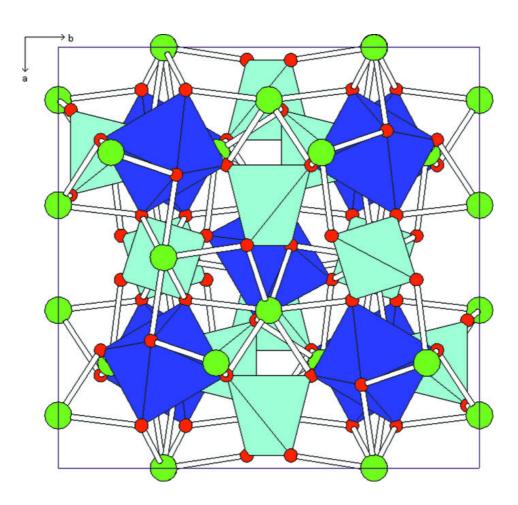


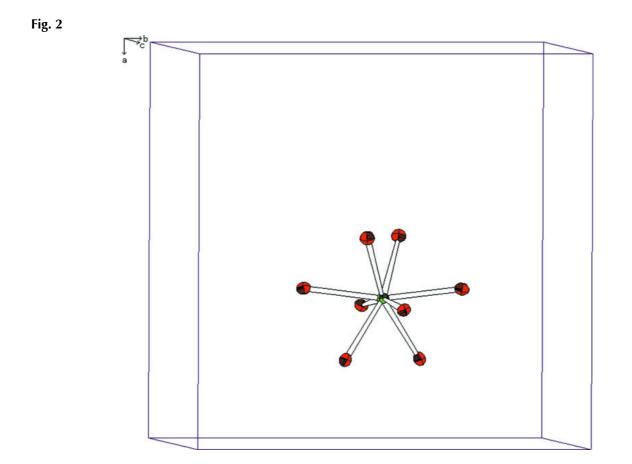
Fig. 2. View of PrO_8 with displacement ellipsoids at the 90% probability level. Green and red ellipsoids represent Pr and O atoms, in Fig.1.

Pentairon tripraseodymium dodecaoxide

Crystal data	
	$D_{\rm x} = 5.894 {\rm Mg m}^{-3}$
$Pr_3Fe_5O_{12}$. 6
$M_r = 893.98$	Synchrotron radiation, $\lambda = 0.67171$ Å
Cubic, <i>Ia</i> 3 <i>d</i> Hall symbol: -I 4bd 2c 3	Cell parameters from 9 reflections $\theta = 17.5 - 52.3^{\circ}$
a = 12.6302 (3) Å	$\mu = 17.41 \text{ mm}^{-1}$
	1
$V = 2014.79 (8) \text{ Å}^3$	T = 298 K
Z = 8 F(000) = 2224	Sphere, black
F(000) = 3224	0.04 mm (radius)
Data collection	
Rigaku AFC four-circle diffractometer	1728 independent reflections
Si 111	1728 reflections with $F > 3\sigma(F)$
Detector resolution: $1.25 \times 1.25^{\circ}$ pixels mm ⁻¹	$R_{\rm int} = 0.016$
$\omega/2\theta$ scans	$\theta_{\text{max}} = 68.3^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$
Absorption correction: for a sphere [Transmission coefficients for spheres tabulated in International Tables C (1992), Table 6.3.3.3, were in- terpolated with Lagrange's method (four-point inter- polation (Yamauchi <i>et al.</i> , 1965)]	$h = -9 \rightarrow 34$
$T_{\min} = 0.413, T_{\max} = 0.441$	$k = -9 \rightarrow 32$
9351 measured reflections	$l = -9 \rightarrow 34$
Refinement	
Refinement on F	Primary atom site location: isomorphous structure methods
Least-squares matrix: full	Weighting scheme based on measured s.u.'s
$R[F^2 > 2\sigma(F^2)] = 0.019$	$(\Delta/\sigma)_{\rm max} = 0.003$
$wR(F^2) = 0.021$	$\Delta \rho_{max} = 2.52 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.06	$\Delta \rho_{min} = -3.16 \text{ e} \text{ Å}^{-3}$
9351 reflections	Extinction correction: B–C type 1 Gaussian isotropic (Becker & Coppens, 1975)
17 parameters	Extinction coefficient: 0.255 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)


	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pr1	0.125000	0.000000	0.250000	0.00531 (1)
Fe1	0.000000	0.000000	0.000000	0.00512 (1)
Fe2	0.375000	0.000000	0.250000	0.00533 (1)
O1	-0.029622 (2)	0.052553 (2)	0.149166 (2)	0.00711 (5)


	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	0.00406 (2)	0.00594 (2)	0.00594 (2)	0	0	0.00111 (1)
Fe1	0.00512 (2)	0.00512 (2)	0.00512 (2)	-0.00023 (1)	-0.00023 (1)	-0.00023 (1)
Fe2	0.00411 (3)	0.00594 (2)	0.00594 (2)	0	0	0
O1	0.00718 (8)	0.00829 (8)	0.00587 (7)	-0.00004 (6)	0.00080 (6)	0.00038 (6)
Geometric para	meters (Å, °)					
Pr1—O1		2.42410 (10)	Fe1—C	01 ⁱ	2.032	20 (10)
Pr1—O1 ⁱ		2.54010 (10)	Fe1—C	01 ^{viii}	2.032	20 (10)
Pr1—O1 ⁱⁱ		2.42410 (10)	Fe1—C	01 ^{ix}	2.032	20 (10)
Pr1—O1 ⁱⁱⁱ		2.54010 (10)	Fe1—C	01^{x}	2.032	20 (10)
Pr1—O1 ^{iv}		2.42410 (10)	Fe1—C	01 ^{xi}	2.032	20 (10)
Pr1—O1 ^v		2.54010 (10)	Fe2—C	01 ^{xii}	1.874	50 (10)
Pr1—O1 ^{vi}		2.42410 (10)	Fe2—C	01 ^{iv}	1.874	50 (10)
Pr1—O1 ^{vii}		2.54010 (10)	Fe2—C	01 ^{xiii}	1.874	50 (10)
Fe1—O1		2.03220 (10)	Fe2—C	01 ^{vi}	1.874	50 (10)
O1—Pr1—O1 ⁱ		67.75 (1)	O1—Fe	e1—O1 ^{viii}	85.87	(1)
O1—Pr1—O1 ⁱⁱ		72.66 (1)	O1—Fe	e1—O1 ^{ix}	180.0	0
O1—Pr1—O1 ⁱⁱⁱ		124.91 (1)	O1—Fe	$e1-O1^{x}$	94.13	(1)
O1—Pr1—O1 ^{iv}		111.18 (1)	O1—Fe	e1—O1 ^{xi}	94.13	(1)
O1—Pr1—O1 ^v		73.25 (1)	O1 ^{xii} —	Fe2—O1 ^{vi}	114.3	9 (1)
O1—Pr1—O1 ^{vi}		159.51 (1)	O1 ^{xii} —	Fe2—O1 ^{iv}	114.3	9 (1)
O1—Pr1—O1 ^{vii}		95.43 (1)	O1 ^{xii} —	Fe2—O1 ^{xiii}	100.0	2 (1)
O1—Fe1—O1 ⁱ		85.87 (1)				

Atomic displacement parameters $(Å^2)$

Symmetry codes: (i) *z*, *x*, *y*; (ii) *x*, -*y*, -*z*+1/2; (iii) *z*, -*x*, -*y*+1/2; (iv) -*x*+1/4, -*z*+1/4, -*y*+1/4; (v) -*z*+1/4, -*y*+1/4, -*x*+1/4; (vi) -*x*+1/4, *z*-1/4, *y*+1/4; (vii) -*z*+1/4, *y*-1/4, *x*+1/4; (viii) *y*, *z*, *x*; (ix) -*x*, -*y*, -*z*; (x) -*z*, -*x*, -*y*; (xi) -*y*, -*z*, -*x*; (xii) *x*+1/2, *y*, -*z*+1/2; (xiii) *x*+1/2, -*y*, *z*.

